Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar.

Identifieur interne : 001551 ( Main/Exploration ); précédent : 001550; suivant : 001552

A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar.

Auteurs : Dong Tian [Canada, République populaire de Chine] ; Richard P. Chandra [Canada] ; Jin-Suk Lee ; Canhui Lu [République populaire de Chine] ; Jack N. Saddler [Canada]

Source :

RBID : pubmed:28649276

Abstract

BACKGROUND

Current single-stage delignification-pretreatment technologies to overcome lignocellulosic biomass recalcitrance are usually achieved at the expense of compromising the recovery of the polysaccharide components, particularly the hemicellulose fraction. One way to enhance overall sugar recovery is to tailor an efficient two-stage pretreatment that can pre-extract the more labile hemicellulose component before subjecting the cellulose-rich residual material to a second-stage delignification process. Previous work had shown that a mild steam pretreatment could recover >65% of the hemicellulose from poplar while limiting the acid-catalysed condensation of lignin. This potentially allowed for subsequent lignin extraction using various lignin solvents to produce a more accessible cellulosic substrate.

RESULTS

A two-stage approach using steam and/or solvent pretreatment was assessed for its ability to separate hemicellulose and lignin from poplar wood chips while providing a cellulose-rich fraction that could be readily hydrolysed by cellulase enzymes. An initial steam-pretreatment stage was performed over a range of temperatures (160-200 °C) using an equivalent severity factor of 3.6. A higher steam temperature of 190 °C applied over a shorter residence time of 10 min effectively solubilized and recovered 75% of the hemicellulose while enhancing the ability of various solvents [deep eutectic solvent (DES), ethanol organosolv, soda/anthraquinone (soda/AQ) or a hydrotrope] to extract lignin in a second stage. When the second-stage treatments were compared, the mild DES treatment (lactic acid and betaine) at 130 °C, removed comparable amounts of lignin with higher selectivity than did the soda/AQ and organosolv pretreatments at 170 °C. However, the cellulose-rich substrates obtained after the second-stage organosolv and soda/AQ pretreatments showed the highest cellulose accessibility, as measured by the Simon's staining technique. They were also the most susceptible to subsequent enzymatic hydrolysis.

CONCLUSIONS

The second-stage pretreatments varied in their ability to solubilize and extract the lignin component of steam-pretreated poplar while enhancing the enzymatic hydrolysis of the resulting cellulose-rich residual fractions. Although DES extraction was more selective in extracting lignin from the steam-pretreated substrates, the organosolv and soda/AQ post treatments disrupted the cellulose structure to a greater extent while enhancing the ease of enzymatic hydrolysis. Graphical abstractEffective hemicellulose removal via steam pretreatment followed by subsequent lignin extraction under acidic, alkaline or solvolytic conditions results in a highly accessible, more readily hydrolysed cellulose fraction.


DOI: 10.1186/s13068-017-0846-5
PubMed: 28649276
PubMed Central: PMC5477284


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar.</title>
<author>
<name sortKey="Tian, Dong" sort="Tian, Dong" uniqKey="Tian D" first="Dong" last="Tian">Dong Tian</name>
<affiliation wicri:level="4">
<nlm:affiliation>Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4 Canada.</nlm:affiliation>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<country>Canada</country>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chandra, Richard P" sort="Chandra, Richard P" uniqKey="Chandra R" first="Richard P" last="Chandra">Richard P. Chandra</name>
<affiliation wicri:level="4">
<nlm:affiliation>Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4 Canada.</nlm:affiliation>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<country>Canada</country>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lee, Jin Suk" sort="Lee, Jin Suk" uniqKey="Lee J" first="Jin-Suk" last="Lee">Jin-Suk Lee</name>
<affiliation>
<nlm:affiliation>Clean Fuel Department, Korea Institute of Energy Research, Jeongeup, Jeonbuk 580-185 South Korea.</nlm:affiliation>
<wicri:noCountry code="subField">Jeonbuk 580-185 South Korea</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Lu, Canhui" sort="Lu, Canhui" uniqKey="Lu C" first="Canhui" last="Lu">Canhui Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Saddler, Jack N" sort="Saddler, Jack N" uniqKey="Saddler J" first="Jack N" last="Saddler">Jack N. Saddler</name>
<affiliation wicri:level="4">
<nlm:affiliation>Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4 Canada.</nlm:affiliation>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<country>Canada</country>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28649276</idno>
<idno type="pmid">28649276</idno>
<idno type="doi">10.1186/s13068-017-0846-5</idno>
<idno type="pmc">PMC5477284</idno>
<idno type="wicri:Area/Main/Corpus">001271</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001271</idno>
<idno type="wicri:Area/Main/Curation">001271</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001271</idno>
<idno type="wicri:Area/Main/Exploration">001271</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar.</title>
<author>
<name sortKey="Tian, Dong" sort="Tian, Dong" uniqKey="Tian D" first="Dong" last="Tian">Dong Tian</name>
<affiliation wicri:level="4">
<nlm:affiliation>Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4 Canada.</nlm:affiliation>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<country>Canada</country>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chandra, Richard P" sort="Chandra, Richard P" uniqKey="Chandra R" first="Richard P" last="Chandra">Richard P. Chandra</name>
<affiliation wicri:level="4">
<nlm:affiliation>Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4 Canada.</nlm:affiliation>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<country>Canada</country>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lee, Jin Suk" sort="Lee, Jin Suk" uniqKey="Lee J" first="Jin-Suk" last="Lee">Jin-Suk Lee</name>
<affiliation>
<nlm:affiliation>Clean Fuel Department, Korea Institute of Energy Research, Jeongeup, Jeonbuk 580-185 South Korea.</nlm:affiliation>
<wicri:noCountry code="subField">Jeonbuk 580-185 South Korea</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Lu, Canhui" sort="Lu, Canhui" uniqKey="Lu C" first="Canhui" last="Lu">Canhui Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Saddler, Jack N" sort="Saddler, Jack N" uniqKey="Saddler J" first="Jack N" last="Saddler">Jack N. Saddler</name>
<affiliation wicri:level="4">
<nlm:affiliation>Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4 Canada.</nlm:affiliation>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<country>Canada</country>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biotechnology for biofuels</title>
<idno type="ISSN">1754-6834</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Current single-stage delignification-pretreatment technologies to overcome lignocellulosic biomass recalcitrance are usually achieved at the expense of compromising the recovery of the polysaccharide components, particularly the hemicellulose fraction. One way to enhance overall sugar recovery is to tailor an efficient two-stage pretreatment that can pre-extract the more labile hemicellulose component before subjecting the cellulose-rich residual material to a second-stage delignification process. Previous work had shown that a mild steam pretreatment could recover >65% of the hemicellulose from poplar while limiting the acid-catalysed condensation of lignin. This potentially allowed for subsequent lignin extraction using various lignin solvents to produce a more accessible cellulosic substrate.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>A two-stage approach using steam and/or solvent pretreatment was assessed for its ability to separate hemicellulose and lignin from poplar wood chips while providing a cellulose-rich fraction that could be readily hydrolysed by cellulase enzymes. An initial steam-pretreatment stage was performed over a range of temperatures (160-200 °C) using an equivalent severity factor of 3.6. A higher steam temperature of 190 °C applied over a shorter residence time of 10 min effectively solubilized and recovered 75% of the hemicellulose while enhancing the ability of various solvents [deep eutectic solvent (DES), ethanol organosolv, soda/anthraquinone (soda/AQ) or a hydrotrope] to extract lignin in a second stage. When the second-stage treatments were compared, the mild DES treatment (lactic acid and betaine) at 130 °C, removed comparable amounts of lignin with higher selectivity than did the soda/AQ and organosolv pretreatments at 170 °C. However, the cellulose-rich substrates obtained after the second-stage organosolv and soda/AQ pretreatments showed the highest cellulose accessibility, as measured by the Simon's staining technique. They were also the most susceptible to subsequent enzymatic hydrolysis.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The second-stage pretreatments varied in their ability to solubilize and extract the lignin component of steam-pretreated poplar while enhancing the enzymatic hydrolysis of the resulting cellulose-rich residual fractions. Although DES extraction was more selective in extracting lignin from the steam-pretreated substrates, the organosolv and soda/AQ post treatments disrupted the cellulose structure to a greater extent while enhancing the ease of enzymatic hydrolysis. Graphical abstractEffective hemicellulose removal via steam pretreatment followed by subsequent lignin extraction under acidic, alkaline or solvolytic conditions results in a highly accessible, more readily hydrolysed cellulose fraction.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28649276</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1754-6834</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>Biotechnology for biofuels</Title>
<ISOAbbreviation>Biotechnol Biofuels</ISOAbbreviation>
</Journal>
<ArticleTitle>A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>157</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s13068-017-0846-5</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Current single-stage delignification-pretreatment technologies to overcome lignocellulosic biomass recalcitrance are usually achieved at the expense of compromising the recovery of the polysaccharide components, particularly the hemicellulose fraction. One way to enhance overall sugar recovery is to tailor an efficient two-stage pretreatment that can pre-extract the more labile hemicellulose component before subjecting the cellulose-rich residual material to a second-stage delignification process. Previous work had shown that a mild steam pretreatment could recover >65% of the hemicellulose from poplar while limiting the acid-catalysed condensation of lignin. This potentially allowed for subsequent lignin extraction using various lignin solvents to produce a more accessible cellulosic substrate.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">A two-stage approach using steam and/or solvent pretreatment was assessed for its ability to separate hemicellulose and lignin from poplar wood chips while providing a cellulose-rich fraction that could be readily hydrolysed by cellulase enzymes. An initial steam-pretreatment stage was performed over a range of temperatures (160-200 °C) using an equivalent severity factor of 3.6. A higher steam temperature of 190 °C applied over a shorter residence time of 10 min effectively solubilized and recovered 75% of the hemicellulose while enhancing the ability of various solvents [deep eutectic solvent (DES), ethanol organosolv, soda/anthraquinone (soda/AQ) or a hydrotrope] to extract lignin in a second stage. When the second-stage treatments were compared, the mild DES treatment (lactic acid and betaine) at 130 °C, removed comparable amounts of lignin with higher selectivity than did the soda/AQ and organosolv pretreatments at 170 °C. However, the cellulose-rich substrates obtained after the second-stage organosolv and soda/AQ pretreatments showed the highest cellulose accessibility, as measured by the Simon's staining technique. They were also the most susceptible to subsequent enzymatic hydrolysis.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The second-stage pretreatments varied in their ability to solubilize and extract the lignin component of steam-pretreated poplar while enhancing the enzymatic hydrolysis of the resulting cellulose-rich residual fractions. Although DES extraction was more selective in extracting lignin from the steam-pretreated substrates, the organosolv and soda/AQ post treatments disrupted the cellulose structure to a greater extent while enhancing the ease of enzymatic hydrolysis. Graphical abstractEffective hemicellulose removal via steam pretreatment followed by subsequent lignin extraction under acidic, alkaline or solvolytic conditions results in a highly accessible, more readily hydrolysed cellulose fraction.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tian</LastName>
<ForeName>Dong</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4 Canada.</Affiliation>
<Identifier Source="ISNI">0000 0001 2288 9830</Identifier>
<Identifier Source="GRID">grid.17091.3e</Identifier>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065 China.</Affiliation>
<Identifier Source="ISNI">0000 0001 0807 1581</Identifier>
<Identifier Source="GRID">grid.13291.38</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chandra</LastName>
<ForeName>Richard P</ForeName>
<Initials>RP</Initials>
<AffiliationInfo>
<Affiliation>Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4 Canada.</Affiliation>
<Identifier Source="ISNI">0000 0001 2288 9830</Identifier>
<Identifier Source="GRID">grid.17091.3e</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Jin-Suk</ForeName>
<Initials>JS</Initials>
<AffiliationInfo>
<Affiliation>Clean Fuel Department, Korea Institute of Energy Research, Jeongeup, Jeonbuk 580-185 South Korea.</Affiliation>
<Identifier Source="ISNI">0000 0001 0691 7707</Identifier>
<Identifier Source="GRID">grid.418979.a</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Canhui</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065 China.</Affiliation>
<Identifier Source="ISNI">0000 0001 0807 1581</Identifier>
<Identifier Source="GRID">grid.13291.38</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Saddler</LastName>
<ForeName>Jack N</ForeName>
<Initials>JN</Initials>
<AffiliationInfo>
<Affiliation>Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4 Canada.</Affiliation>
<Identifier Source="ISNI">0000 0001 2288 9830</Identifier>
<Identifier Source="GRID">grid.17091.3e</Identifier>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>06</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biotechnol Biofuels</MedlineTA>
<NlmUniqueID>101316935</NlmUniqueID>
<ISSNLinking>1754-6834</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Biorefinery</Keyword>
<Keyword MajorTopicYN="N">Deep eutectic solvent</Keyword>
<Keyword MajorTopicYN="N">Enzymatic accessibility</Keyword>
<Keyword MajorTopicYN="N">Lignin extraction</Keyword>
<Keyword MajorTopicYN="N">Steam pretreatment</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>03</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>06</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>6</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>6</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>6</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28649276</ArticleId>
<ArticleId IdType="doi">10.1186/s13068-017-0846-5</ArticleId>
<ArticleId IdType="pii">846</ArticleId>
<ArticleId IdType="pmc">PMC5477284</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Agric Food Chem. 2011 Aug 24;59(16):8691-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21749036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2003 Jan;86(2):105-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12653274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2008 Sep-Oct;24(5):1178-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19194930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2004 Jul 28;126(29):9142-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15264850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2013 Jun;137:294-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23587832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ChemSusChem. 2013 Jan;6(1):110-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23180649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2006 Aug 9;54(16):5806-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16881681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2011 Jan 26;4(1):2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21269447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2014 Jul-Aug;30(4):923-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24610675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2013 Feb;130:570-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23334012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2009 Mar-Apr;25(2):315-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19266561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2010 Mar 10;58(5):2915-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20146421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2012 Jan;103(1):201-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22047660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Jul;101(13):4851-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20042329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2013 May;135:58-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23186666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2009 Apr;82(5):815-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19214499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2013 Mar 11;52(11):3074-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23401138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2013 Dec;150:36-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24141195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2006 Jun;7(6):2027-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16768429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ChemSusChem. 2015 May 22;8(10):1716-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25677100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2008 Sep;99(13):5270-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18158236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2007 Nov;98(16):3061-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17141499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2009 Apr 1;102(5):1368-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19090482</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
<li>République populaire de Chine</li>
</country>
<region>
<li>Colombie-Britannique </li>
</region>
<settlement>
<li>Vancouver</li>
</settlement>
<orgName>
<li>Université de la Colombie-Britannique</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Lee, Jin Suk" sort="Lee, Jin Suk" uniqKey="Lee J" first="Jin-Suk" last="Lee">Jin-Suk Lee</name>
</noCountry>
<country name="Canada">
<region name="Colombie-Britannique ">
<name sortKey="Tian, Dong" sort="Tian, Dong" uniqKey="Tian D" first="Dong" last="Tian">Dong Tian</name>
</region>
<name sortKey="Chandra, Richard P" sort="Chandra, Richard P" uniqKey="Chandra R" first="Richard P" last="Chandra">Richard P. Chandra</name>
<name sortKey="Saddler, Jack N" sort="Saddler, Jack N" uniqKey="Saddler J" first="Jack N" last="Saddler">Jack N. Saddler</name>
</country>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Tian, Dong" sort="Tian, Dong" uniqKey="Tian D" first="Dong" last="Tian">Dong Tian</name>
</noRegion>
<name sortKey="Lu, Canhui" sort="Lu, Canhui" uniqKey="Lu C" first="Canhui" last="Lu">Canhui Lu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001551 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001551 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28649276
   |texte=   A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28649276" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020